Wifi скорость передачи данных 802.11 n. Сети WiFi

Разработкой стандартов WiFi 802.11 занимается организация IEEE (Institute of Electrical and Electronic Engineers)

IEEE 802.11 - базовый стандарт для сетей Wi-Fi, который определяет набор протоколов для самых низких скоростей передачи данных (transfer).


IEEE 802.11 b
- описывает бо льшие скорости передачи и вводит больше технологических ограничений. Этот стандарт широко продвигался со стороны WECA ( Wireless Ethernet Compatibility Alliance) и изначально назывался Wi- Fi.
Используются частотные каналы в спектре 2.4GHz ()
.
Ратифицирован в 1999 году.
Используемая радиочастотная технология: DSSS.
Кодирование: Barker 11 и CCK.
Модуляции: DBPSK и DQPSK,
Максимальные скорости передачи данных (transfer) в канале: 1, 2, 5.5, 11 Mbps,

IEEE 802.11 a - описывает значительно более высокие скорости передачи (transfer) чем 802.11b.
Используются частотные каналы в частотном спектре 5GHz. Протокол
Не совместим с 802.11 b .
Ратифицирован в 1999 году.
Используемая радиочастотная технология: OFDM.
Кодирование: Convoltion Coding.
Модуляции: BPSK, QPSK, 16-QAM, 64-QAM.
Максимальные скорости передачи данных в канале: 6, 9, 12, 18, 24, 36, 48, 54 Mbps.

IEEE 802.11 g
- описывает скорости передачи данных эквивалентные 802.11а.
Используются частотные каналы в спектре 2.4GHz. Протокол совместим с 802.11b.
Ратифицирован в 2003 году.
Используемые радиочастотные технологии: DSSS и OFDM.
Кодирование: Barker 11 и CCK.
Модуляции: DBPSK и DQPSK,
Максимальные скорости передачи данных (transfer) в канале:
- 1, 2, 5.5, 11 Mbps на DSSS и
- 6, 9, 12, 18, 24, 36, 48, 54 Mbps на OFDM.

IEEE 802.11n - самый передовой коммерческий WiFi-стандарт, на данный момент, официально разрешенный к ввозу и применению на территории РФ (802.11ac пока в процессе проработки регулятором). В 802.11n используются частотные каналы в частотных спектрах WiFi 2.4GHz и 5GHz. Совместим с 11b/11 a /11 g . Хотя рекомендуется строить сети с ориентацией только на 802.11n, т.к. требуется конфигурирование специальных защитных режимов при необходимости обратной совместимости с устаревшими стандартами. Это ведет к большому приросту сигнальной информации и существенному снижению доступной полезной производительности радиоинтерфейса. Собственно даже один клиент WiFi 802.11g или 802.11b потребует специальной настройки всей сети и мгновенной ее существенной деградации в части агрегированной производительности.
Сам стандарт WiFi 802.11n вышел 11 сентября 2009 года.
Поддерживаются частотные каналы WiFi шириной 20MHz и 40MHz (2x20MHz).
Используемая радиочастотная технология: OFDM.
Используется технология OFDM MIMO (Multiple Input Multiple Output) вплоть до уровня 4х4 (4хПередатчика и 4хПриемника). При этом минимум 2хПередатчика на Точку Доступа и 1хПередатчик на пользовательское устройство.
Примеры возможных MCS (Modulation & Coding Scheme) для 802.11n, а также максимальные теоретические скорости передачи данных (transfer) в радиоканале представлены в следующей таблице:

Здесь SGI это защитные интервалы между фреймами.
Spatial Streams это количество пространственных потоков.
Type это тип модуляции.
Data Rate это максимальная теоретическая скорость передачи данных в радиоканале в Mбит/сек.


Важно подчеркнуть , что указанные скорости соответствуют понятию channel rate и являются предельным значением с использованием данного набора технологий в рамках описываемого стандарта(собственно эти значения, как Вы вероятно заметили, производители пишут и на коробках домашних WiFi-устройств в магазинах). Но в реальной жизни эти значения не достижимы в силу специфики самой технологии стандарта WiFi 802.11. Например здесь сильно влияет "политкорректность" в части обеспечения CSMA/CA (устройства WiFi постонно слушают эфир и не могут передавать, если среда передачи занята), необходимость подтверждения каждого юникастового фрейма, полудуплексная природа всех стандартов WiFi и только 802.11ac/Wave-2 сможет это начать обходить с и т.д.. Поэтому практическая эффективность устаревших стандартов 802.11 b/g/a никогда не превышает 50% в идеальных условиях(например для 802.11g максимальная скорость на абонента обычно не выше 22Мб/с), а для 802.11n эффективность может быть до 60%. Если же сеть работает в защищенном режиме, что часто и просходит из-за смешанного присутствия различных WiFi-чипов на различных устройствах в сети, то даже указанная относительная эффективность может упасть в 2-3 раза. Это касается, например, микса из Wi-Fi устройств с чипами 802.11b, 802.11g в сети с точками доступа WiFi 802.11g или устройства WiFi 802.11g/802.11b в сети с точками доступа WiFi 802.11n и т.п.. Подробнее о .


Помимо основных стандартов WiFi 802.11a, b, g, n, существуют и используются дополнительные стандарты для реализации различных сервисных функций:

. 802.11d . Для адаптации различных устройств стандарта WiFi к специфическим условиям страны. Внутри регуляторного поля каждого государства диапазоны часто различаются и могут быть отличны даже в в зависимости от географического положения. Стандарт WiFi IEEE 802.11d позволяет регулировать полосы частот в устройствах разных производителей с помощью специальных опций, введенных в протоколы управления доступом к среде передачи.

. 802.11e . Описывает классы качества QoS для передачи различных медиафайлов и, в целом различного медиаконтента. Адаптация МАС-уровня для 802.11e, определяет качество, например, одновременной передачи звука и изображения.

. 802.11f . Направлен на унификацию параметров Точек Доступа стандарта Wi-Fi различных производителей. Стандарт позволяет пользователю работать с разными сетями при перемещении между зонами действия отдельных сетей.

. 802.11h . Используется для предотвращения создания проблем метеорологическим и военным радарам путем динамического снижения излучаемой мощности Wi-Fi оборудованием или динамический переход на другой частотный канал при обнаружении триггерного сигнала (в большинстве европейских стран наземные станции слежения за метеорологическими спутниками и спутниками связи, а также радары военного назначения работают в диапазонах, близких к 5 МГц). Этот стандарт является необходимым требованием ETSI, предъявляемым к оборудованию, допущенному для эксплуатации на территории стран Европейского Союза.

. 802.11i . В первых вариантах стандартов WiFi 802.11 для обеспечения безопасности сетей Wi-Fi использовался алгоритм WEP. Предполагалось, что этот метод может обеспечить конфиденциальность и защиту передаваемых данных авторизированных пользователей беспроводной сети от прослушивания.Теперь эту защиту можно взломать всего за несколько минут. Поэтому в стандарте 802.11i были разработаны новые методы защиты сетей Wi-Fi, реализованные как на физическом, так и программном уровнях. В настоящее время для организации системы безопасности в сетях Wi-Fi 802.11 рекомендуется использовать алгоритмы Wi-Fi Protected Access (WPA). Они также обеспечивают совместимость между беспроводными устройствами различных стандартов и различных модификаций. Протоколы WPA используют усовершенствованную схему шифрования RC4 и метод обязательной аутентификации с использованием EAP. Устойчивость и безопасность современных сетей Wi-Fi определяется протоколами проверки конфиденциальности и шифрования данных (RSNA, TKIP, CCMP, AES). Наиболее рекомендованным подходом является использование WPA2 с шифрованием AES (и не забывайте о 802.1х с применением, очень желательно, механизмов туннелирования, например EAP-TLS, TTLS и т.п.). .

. 802.11k . Этот стандарт фактически направлен на реализацию балансировки нагрузки в радиоподсистеме сети Wi-Fi. Обычно в беспроводной локальной сети абонентское устройство обычно соединяется с той точкой доступа, которая обеспечивает наиболее сильный сигнал. Нередко это приводит к перегрузке сети в одной точке, когда к одной Точке Доступа подключется сразу много пользователей. Для контроля подобных ситуаций в стандарте 802.11k предложен механизм, ограничивающий количество абонентов, подключаемых к одной Точке Доступа, и дающий возможность создания условий, при которых новые пользователи будут присоединяться к другой ТД даже не смотря на более слабый сигнал от нее. В этом случае аггрегированная пропускная способность сети увеличивается благодаря более эффективному использованию ресурсов.

. 802.11m . Поправки и исправления для всей группы стандартов 802.11 объединяются суммируются в отдельном документе с общим названием 802.11m. Первый выпуск 802.11m был в 2007 г, далее в 2011 г и т.д..

. 802.11p . Определяет взаимодействие Wi-Fi-оборудования, движущегося со скоростью до 200 км/ч мимо неподвижных Точек Доступа WiFi, удаленных на расстояние до 1 км. Часть стандарта Wireless Access in Vehicular Environment (WAVE). Стандарты WAVE определяют архитектуру и дополнительный набор служебных функций и интерфейсов, которые обеспечивают безопасный механизм радиосвязи между движущимися транспортными средствами. Эти стандарты разработаны для таких приложений, как, например, организация дорожного движения, контроль безопасности движения, автоматизированный сбор платежей, навигация и маршрутизация транспортных средств и др.

. 802.11s . Стандарт для реализации полносвязных сетей (), где любое устройство может служить как маршрутизатором, так и точкой доступа. Если ближайшая точка доступа перегружена, данные перенаправляются к ближайшему незагруженному узлу. При этом пакет данных передается (packet transfer) от одного узла к другому, пока не достигнет конечного места назначения. В данном стандарте введены новые протоколы на уровнях MAC и PHY, которые поддерживают широковещательную и многоадресную передачу (transfer), а также одноадресную поставку по самоконфигурирующейся системе точек доступа Wi-Fi. C этой целью в стандарте введен четырехадресный формат кадра. Примеры реализации сетей WiFi Mesh: , .

. 802.11t . Стандарт создан для институализации процесса тестирования решений стандарта IEEE 802.11. Описываются методики тестирования, способы измерений и обработки результатов (treatment), требования к испытательному оборудованию.

. 802.11u . Определяет процедуры взаимодействия сетей стандарта Wi-Fi с внешними сетями. Стандарт должен определять протоколы доступа, протоколы приоритета и запрета на работу с внешними сетями. На данный момент вокруг данного стандарта образовалось большое движение как в части разработки решений - Hotspot 2.0, так и в части организации межсетевого роуминга - создана и растет группа заинтересованных операторов, которые совместно решают вопросы роуминга для своих Wi-Fi-сетей в диалоге (Альянс WBA). Подробнее о Hotspot 2.0 в наших статьях: , .

. 802.11v . В стандарте должны быть разработаны поправки, направленные на совершенствование систем управления сетями стандарта IEEE 802.11. Модернизация на МАС- и PHY-уровнях должна позволить централизовать и упорядочить конфигурацию клиентских устройств, соединенных с сетью.

. 802.11y . Дополнительный стандарт связи для диапазона частот 3,65-3,70 ГГц. Предназначен для устройств последнего поколения, работающих с внешними антеннами на скоростях до 54 Мбит/с на расстоянии до 5 км на открытом пространстве. Стандарт полностью не завершен.

802.11w . Определяет методы и процедуры улучшения защиты и безопасности уровня управления доступом к среде передачи данных (МАС). Протоколы стандарта структурируют систему контроля целостности данных, подлинности их источника, запрета несанкционированного воспроизведения и копирования, конфиденциальности данных и других средств защиты. В стандарте введена защита фрейма управления (MFP: Management Frame Protection), а дополнительные меры безопасности позволяют нейтрализовать внешние атаки, такие, как, например, DoS. Немного больше по MFP здесь: , . Кроме того, эти меры обеспечат безопасность для наиболее уязвимой сетевой информации, которая будет передаваться по сетям с поддержкой IEEE 802.11r, k, y.

802.11ас. Новый стандарт WiFi, который работает только в частотной полосе 5ГГц и обеспечивает значительно бо льшие скорости как на индивидуального клиента WiFi, так и на Точку Доступа WiFi. Подробнее смотрите в нашей статье .


Ресурс постоянно пополняется! Для получения анонсов при выходе новых тематических статей или появлении новых материалов на сайте предлагаем подписаться .


Присоединяйтесь к нашей группе на


Я прочитал что в характеристиках моего роутера написана скорость 54 Мбит/сек, но мой ноутбук качает файлы только на скорости 20-24 мбит/сек. И когда я передаю файлы с одного ноутбука на другой ноутбук, он подключен к этому же роутеру, и когда я передаю файл скорость упала еще больше. В чем здесь спрятана проблема?

Проблема в том, что скорость, на которую говорят в характеристиках создатели беспроводного Wi-Fi оборудования, не есть скоростью для передачи данных пользователей. Предоставленная в характеристике скорость - лишь такая называемая "скорость радио", в то самое время как реальная скорость для передачи пользовательских файлов должна хотя составлять половину от скорости которая написана в характеристике. Тем более, когда два компьютера подключены к и той же точке доступа или роутеру по Wi-Fi, в силу технических мощностей стандарта скорость файловая обменная скорость между компьютерами уменьшается еще в два раза. В случае когда с Wi-Fi 802.11g скорость при передаче пакетов между двумя ПК сможет составить всего около 12 Мбит/с. Если какой-то из ПК будет приключен к роутеру по LAN кабелю, тогда скорость заново востановиться до 20-24 Мбит/с.

При этом все данные цифры актуальны лишь для того случая, когда все клиенты и точка доступа находится в при пределах самой прямой видимости. Когда будет увеличено расстояник скорость будет невнушаемо падать (реальная дальность действия wi-fi с нормальной скоростью обычно не переходит за 100 м). Большое влияние дают перекладины в здания (при этом не только железобетонные или кирпичные, но и гипсокартонные или стеклянные). Также сказывается на сигнале Wi-Fi мебель и даже комнатные разные растения.

Если Вы хотите, полностью раскрыть потенциал нового стандарта 802.11n, в характеристиках которого написана скорость радио до 300 Мбит/с (это где то, 150 Мбит/с скорость при передачи данных), вам нужно будет особенное оборудование. Только лишь роутеры и и радио приемники, у которых иметься три антенны, и также они поддерживают работу на мощной частоте 5 ГГц, они способны по теории даже приблизиться к высокой отметке в 150 Мит/сек для высокой скорости при передачи данных. В то же самое время огромная большая часть системного оборудования, которая может поддерживать 802.11n, и имеет только одну антенну (особенно узко все это касается USB-приемников или встроенных на ноутбуки сетевых адаптеров) и работает она только на частоте 2,4 ГГц, что на все сто процентов "урезает" теоретически максимальную скорость при передачи данных между пользователями лишь около 75 Мбит/сек.

К сожалению, теоретическая скорость очень редко оказывается реально достижимой. На практике же самое лучшее из доступного на рынке оборудования для домашнего применения, полностью соответствующего требованиям стандарта 802.11n (со скоростью радио 300 Мбит/с), обеспечивает скорость передачи данных лишь 90-110 Мбит/сек вместо теоретических 150 Мбит/сек.

При покупке 5ГГц роутера слово DualBand (Двухдиапазонный) отвлекает наше внимание от более важной сути, стандарта Wi-Fi, использующего несущую 5ГГц. В отличие от стандартов использующих несущую 2.4ГГц, уже давно знакомых и понятных, 5ГГц устройства могут использоваться в комплексе с 802.11n или 802.11ac стандартами (в дальнейшем AC стандарт и N стандарт).

Группа стандартов Wi-Fi IEEE 802.11 эволюционировала довольно динамично, от IEEE 802.11a, который обеспечивал скорости до 2 Мбит/с , через 802.11b и 802.11g, которые давали скорости до 11 Мбит/с и 54 Мбит/с соответственно. Затем появился стандарт 802.11n или просто n-стандарт. N-стандарт был настоящим прорывом, так как теперь через одну антенну можно было передавать трафик на немыслимой по тем временам скорости 150Мбит . Это достигалось за счёт использования передовых технологий кодирования (MIMO), более тщательного учёта особенностей распространения ВЧ волн, технологии удвоенной ширины канала, не статичный защитный интервал определяемый таким понятием как индекс модуляции и схемы кодирования.

Принципы функционирования 802.11n

Уже привычный 802.11n может применяться в одном из двух диапазонов 2.4ГГц и 5.0 ГГц. На физическом уровне кроме усовершенствованной обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны , через каждую антенну можно пропустить до 150Мбит/с , т.е. это теоретически 600Мбит. Однако, учитывая, что одновременно антенна работает либо на приём либо на вещание, то скорость передачи данных в одну сторону не превысит 75Мбит/с на антенну.

Многоканальный вход/выход (MIMO)

Впервые поддержка этой технологии появилась в стандарте 802.11n. MIMO расшифровывается как Multiple Input Multiple Output, что в переводе - многоканальный вход многоканальный выход.

С помощью технологии MIMO реализована способность одновременного приема и передачи нескольких потоков данных через несколько антенн, а не одну.

Стандарт 802.11n определяет различные конфигурации антенн от "1х1" до "4х4". Также возможны несиметричные конфигурации, например, "2х3", где первое значение означает количество передающих, а второе количество принимающих антенн.

Очевидно, максимальную скорость приёма передачи возможно достичь только при использовании схемы "4х4". На самом деле количество антенн не увеличивает скорость само по себе, однако это позволяет применять различные усовершенствованные методы обработки сигналов, которые автоматически выбираются и применяются устройством, в том числе и исходя из конфигурации антенн. Например, схема "4х4" с модуляцией 64-QAM обеспечивает скорость до 600 Мбит/с, схема "3х3" и 64-QAM обеспечивает скорость до 450 Мбит/с, а схемы "1х2" и "2х3" до 300 Мбит/с.

Ширина полосы пропускания канала 40 МГц

Особенностью стандарта 802.11n является удвоенная ширина 20МГц канала, т.е. 40 МГц .Возможность поддержки 802.11n устройствами работающих на несущих 2.4ГГц и 5ГГц. В то время как стандарт 802.11b/g работает только на 2.4 ГГц, а 802.11a работает на частоте 5 ГГц. В полосе частот 2.4 ГГц для беспроводных сетей доступны всего 14 каналов, из них первые 13 разрешены в СНГ, с интервалами 5 МГц между ними. Устройства использующие стандарт 802.11b/g используют каналы шириной 20 МГц. Из 13 каналов 5 пересекающихся. Для исключения взаимных помех между каналами необходимо, чтобы их полосы отстояли друг от друга на 25 МГц. Т.е. не пересекающимися будут только три канала на полосе 20 МГц: 1, 6 и 11.

Режимы работы 802.11n

Стандарт 802.11n предусматривает работу в трёх режимах: High Throughput (читый 802.11n), Non-High Throughput (полная совместимость с 802.11b/g) и High Throughput Mixed (смешанный режим).

High Throughput(НТ) - режим с высокой пропускной способностью.

Точки доступа 802.11n используют режим High Throughput. Данный режим абсолютно исключает совместимость с предыдущими стандартами. Т.е. усройства не поддерживающие n-стандарт подключиться не смогут. Non-High Throughput(Non-HT) - режим с невысокой пропускной способностью Чтобы устаревшие устройства могли подключиться, все кадры отправляются в формате 802.11b/g. В этом режиме используется ширина канала 20 МГц для обеспечения обратной совместимости. При использовании этого режима данные передаются со скоростью, поддерживаемой самым медленным устройством, подключённым к данной точке доступа (или Wi-Fi роутеру).

High Throughput Mixed - смешанный режим с высокой пропускной способностью. Смешанный режим позволяет устройству работаь одновременно по стандарту 802.11n и 802.11b/g. Обеспечит обратную совместимость устаревших устройств, и устройств использующих стандарт 802.11n. Однако, пока старое устройство осуществляет прием-передачу данных, устаройство поддерживающее 802.11n ждёт своей очереди, и это сказывается на скорости. Также очевидно, что, чем больше трафика будет идти по стандарту 802.11b/g, тем меньшую производительность сможет показать 802.11n устройство в режиме High Throughput Mixed.

Индекс модуляции и схемы кодирования (MCS)

Стандарт 802.11n определяет понятие "Индекс модуляции и схемы кодирования"(Modulation and Coding Scheme). MCS - это простое целое число, присваиваемое варианту модуляции (всего возможно 77 вариантов). Каждый вариант определяет тип модуляции радиочастоты (Type), скорость кодирования (Coding Rate), защитный интервал (Short Guard Interval) и значения скорости передачи данных. Сочетание всех этих факторов определяет реальную физическую (PHY) скорость передачи данных, начиная от 6,5 Мбит/с до 600 Мбит/с (данная скорость может быть достигнута за счет использования всех возможных опций стандарта 802.11n).

Некоторые значения индекса MCS определенны и показаны в следующей таблице:


Расшифруем значения некоторых параметров.

Короткий защитный интервал SGI (Short Guard Interval) определяет интервал времени между передаваемыми символами. В устройствах стандарта 802.11b/g используется защитный интервал 800 нс, а в устройствах 802.11n есть возможность использования паузы всего в 400 нс. Короткий защитный интервал (SGI) повышает скорость передачи данных на 11 процентов. Чем короче этот интервал тем большее количество информации можно передать в единицу времени, однако, при этом точность определения символов падает, поэтому разработчиками стандарта подобрано оптимальное значение этого интервала.

MCS значения от 0 до 31 определяют тип модуляции и схемы кодирования, которые будут использоваться для всех потоков. MCS значения с 32 по 77 описывают смешанные комбинации, которые могут быть использованы для модуляций от двух до четырех потоков.

Точки доступа 802.11n должны поддерживать MCS значения от 0 до 15, в то время как 802.11n станции должны поддерживать MCS значения от 0 до 7. Все другие значения MCS, в том числе связанные с каналами шириной 40 МГц, коротким защитным интервалом (SGI), являются опциональными, и могут не поддерживаться.

Особенности AC стандарта

В реальных условиях ни одному стандарту не удалось добиться максимума своей теоретической производительности, поскольку на сигнал влияет множество факторов: электромагнитные помехи от бытовой техники и электроники, препятствия на пути сигнала, отражения сигнала, и даже магнитные бури. Из-за этого производители и продолжают работать над созданием еще более эффективных вариантов стандарта Wi-Fi, более приспособленного не только для домашнего, но и активного офисного использования, а также построения расширенных сетей. Благодаря этому стремлению, совсем недавно, родилась новая версия IEEE 802.11 — 802.11ac (или просто AC стандарт ).

Принципиальных отличий от N в новом стандарте не слишком много, но все они направлены на увеличение пропускной способности беспроводного протокола. В основном разработчики пошли путём улучшения преимуществ стандарта N. Самое заметное — расширение каналов MIMO с максимальных трех до восьми. Это значит, что вскоре мы сможем увидеть в магазинах беспроводные маршрутизаторы с восемью антеннами. А восемь антенн — это теоретическое удвоение пропускной способности канала до 800 Мбит/с, это не говоря о возможных шестнадцатиантенных устройствах.

Устройства стандартов 802.11abg работали на каналах шириной пропускания 20 МГц, а чистый N предполагает каналы шириной 40 МГц. В новом стандарте предусмотренно, что AC роутеры имеют каналы на 80 и 160 МГц, а это означает удвоение и учетверение канала удвоенной ширины.

Стоит отметить предусмотренную в стандарте улучшенную реализацию технологии MIMO — технологию MU-MIMO. Старые версии протоколов, совместимые со стандартом N, поддерживали полудуплексную передачу пакетов от устройства к устройству. То есть в момент, передачи пакета одним устройством, другие устройства могут работать только на прием. Соответственно, если одно из устройств подключается к роутеру, используя старый стандарт, тогда и другие будут работать медленнее из-за увеличившегося времени передачи пакетов устройству использующему старый стандарт. Это может быть причиной понижения качества характеристик беспроводной сети в случае, если к ней подключено много таких устройств. Технология MU-MIMO решает эту проблему, создавая многопоточный канал передачи, при использовании которого остальные устройства не ждут своей очереди. В то же время AC роутер должен быть обратносовместим с предыдущими стандартами.

Однако, конечно же есть и ложка дёгтя. В настоящее время по прежнему абсолютное большинство ноутбуков, планшетов, смартфонов не поддерживают не только AC стандарт Wi-Fi, а даже не умеют работать на несущей 5ГГц. Т.е. и 802.11n на 5ГГц им недоступна. Также сами AC роутеры и точки доступа могут в несколько раз превышать по стоимости роутеры ориентированные на использование стандарта 802.11n.

Наиболее быстро развивающимся сегментом телекоммуникаций сегодня является Беспроводная Локальная Сеть (WiFi). В последние годы виден все больший рост спроса на мобильные устройства, построенные на основе беспроводных технологий.

Стоит отметить, что WiFi продукты передают и получают информацию с помощью радиоволн. Несколько одновременных вещаний могут происходить без обоюдного вмешательства благодаря тому, что радиоволны передаются по разным радиочастотам, известным также как каналы. Для осуществления передачи информации WiFi устройства должны «наложить» данные на радиоволну, также известную как несущая волна. Этот процесс называется модуляцией. Существуют различные типы модуляции, которые мы рассмотрим далее. Каждый тип модуляции имеет свои преимущества и недостатки с точки зрения эффективности и требований к питанию. Вместе, рабочий диапазон и тип модуляции, определяют физический уровень данных (PHY) для стандартов передачи данных. Продукты совместимы по PHY в том случае, когда они используют один диапазон и один тип модуляции.

Первый стандарт беспроводных сетей 802.11 был одобрен Институтом инженеров по электротехнике и радиоэлектронике (IEEE) в 1997 году и поддерживал скорость передачи данных до 2-х Мбит\с. Используемые технологические схемы модуляции стандарта: псевдослучайная перестройка рабочей частоты (FHSS - Frequency Hopping Spread Spectrum) и широкополосная модуляция с прямым расширением спектра (DSSS - Direct Sequence Spread Spectrum).

Далее, в 1999 году, IEEE одобрила еще два стандарта беспроводных сетей WiFi: 802.11a и 802.11b. Стандарт 802.11a работает в частотном диапазоне 5ГГц со скоростью передачи данных до 54Мбит\с. Данный стандарт построен на основе технологии цифровой модуляции ортогонального мультплексирования с разделением частот (OFDM - Orthogonal Frequency Division Multiplexing). Стандарт 802.11b использует диапазон частот 2.4 ГГц и достигает скоростей передачи данных до 11Мбит\с. В отличие от стандарта 802.11a, схема стандарта 802.11b построена по принципу DSSS.

Поскольку реализовать схему DSSS легче, нежели чем OFDM, то и продукты, использующие стандарт 802.11b, начали появляться на рынке раньше (с 1999 года). С тех пор продукты, работающие по беспроводному протоколу радиодоступа и использующие стандарт 802.11b, широко использовались в корпорациях, офисах, дома, в загородных коттеджах, в общественных местах (хот-споты) и т.д. На всех продуктах, прошедших сертификацию альянса совместимости беспроводного оборудования Ethernet (WECA - Wireless Ethernet Compatibility Alliance), имеется соответствующая отметка с официально зарегистрированным логотипом WiFi. Альянс WECA (или Wi-Fi Alliance) включает в себя всех основных производителей беспроводных устройств на основе технологии WiFi. Альянс занимается тем, что сертифицирует, маркирует, а также тестирует на совместимость оборудование, применяющее технологии WiFi.

В начале 2001 года Федеральная Комиссия по Коммуникациям Соединенных Штатов (FCC - Federal Communications Commission) ратифицировала новые правила, благодаря которым разрешается дополнительная модуляция в диапазоне 2.4 ГГц. Это позволило IEEE расширить стандарт 802.11b, что привело к поддержке более высоких скоростей для передачи данных. Таким образом, появился стандарт 802.11g, который работает со скоростью передачи данных до 54Мбит\с и разрабатывался с использованием технологии ODFM.

Частоты Wi-Fi

Обеспечить беспроводную связь с Интернет теперь доступно всем. Достаточно подключить у себя в доме, на даче или в офисе систему wifi и можно принимать сигнал не заботясь о бесконечных проводах, телефонных подключениях, модемах и картах связи. Роутер wifi является маршрутизатором, принимающим решение по пересылке пакетных данных для различных модульных сегментов сети. Проще говоря, если у вас в доме находятся один или несколько ноутбуков и все они нуждаются в подключении к сети Интернет, то эту проблему решает маршрутизатор беспроводной связи. Система wifi самостоятельно находит ваши ноутбуки и устанавливает соединение с Интернет. Стандартная схема беспроводного маршрутизатора предусматривает не менее одного соединения. Раздача интернета происходит на различных частотах. Для Российской Федерации предусмотрены и выделены частоты в диапазоне от 5150-5350 МГц до 5650-6425 МГц. Данные частоты являются основными, для работы в указанных диапазонах не требуется специального разрешения. Фиксированный беспроводной доступ 5150-5350 МГц и 5650-6425 МГц обеспечивает высокую скорость передаваемых данных в сети Интернет. Для поиска свободного канала связи необходимо скоординировать подключение сети с администрациями других сетей. Каждая сеть должна использовать канал-частоту, отделенную от другого канала полосой 25 МГц.

Стандарт 802.11a – Высокая производительность и быстродействие.

Благодаря использованию частоты 5 ГГц и модуляции OFDM у этого стандарта есть два ключевых преимущества перед стандартом 802.11b. Во-первых, это значительно увеличенная скорость передачи данных по каналам связи. Во-вторых, увеличилось число не накладывающихся каналов. Диапазон 5 ГГц (также известный как UNII) фактически состоит из трех субдиапозонов: UNII1 (5.15 – 5.25 ГГц), UNII2 (5.25 – 5.35 ГГц) и UNII3 (5.725 – 5.825 ГГц). При использовании одновременно двух субдиапозонов UNII1 и UNII2 получаем до восьми непересекающихся каналов против всего лишь трех в диапазоне 2.4 ГГц. Также у этого стандарта гораздо больше доступная полоса пропускания. Таким образом, с использованием стандарта 802.11а можно поддерживать большее число одновременных, более продуктивных, неконфликтных беспроводных соединений.

Стоит отметить, что т.к. стандарты 802.11а и 802.11b работают в различных диапазонах, то и продукты, разработанные под эти стандарты не совместимы. Например, точка доступа WiFi, работающая в диапазоне 2.4 ГГц, стандарта 802.11b, не будет работать с беспроводной сетевой картой, рабочий диапазон которой 5 ГГц. Однако, оба стандарта могут и сосуществовать. К примеру, пользователи, подключенные к точкам доступа, применяющим разные стандарты, также могут использовать любые внутренние ресурсы этой сети, но при условии, что эти точки доступа подключены к одной опорной сети.

Еще важно знать, что в Европе и России диапазон 5 ГГц применяется исключительно в военных целях, соответственно в любых иных целях он запрещен к использованию.

802.11g – Высокая скорость в диапазоне 2.4 ГГц.

Стандарт 802.11g несет с собой более высокие скорости передачи данных, при этом поддерживая совместимость с продуктами стандарта 802.11b. Стандарт работает с применением модуляции DSSS на скоростях до 11Мбит\с, но при этом дополнительно используется модуляция OFDM на скоростях выше 11Мбит\с. Таким образом, оборудование стандартов 802.11b и 802.11g совместимо на скоростях, не превышающих 11Мбит\с. Если в диапазоне 2.4 ГГц необходима скорость выше, нежели 11Мбит\с, то нужно использовать оборудование стандарта 802.11g.

Можно сказать, что стандарт 802.11g соединил в себе все лучшее от стандартов 802.11b и 802.11a.

- Зачем вам в Решётах нубук?
- Чтоб безразмерно использовать возможности блюпупа, и коммутироваться с другими абонентами по всему региону Россия с помощью Ви-Фи!
(С) Уральские Пельмени

Впервые рабочая группа IEEE 802.11 была анонсирована в 1990 году и вот уже 25 лет идёт непрекращающаяся работа над беспроводными стандартами. Основным трендом является постоянное увеличение скоростей передачи данных. В данной статье я попробую проследить путь развития технологии и показать, за счёт чего обеспечивалось увеличение производительности и чего стоит ждать в ближайшем будущем. Предполагается, что читатель знаком с основными принципами беспроводной связи: видами модуляции, глубиной модуляции, шириной спектра и т.д. и знает основные принципы работы Wi-Fi сетей. На самом деле существует не так много способов увеличения пропускной системы связи и большинство из них было реализовано на разных этапах совершенствования стандартов группы 802.11.

Рассмотрению будут подвергнуты стандарты, определяющие физический уровень, из взаимно совместимой линейки a/b/g/n/aс. Стандарты 802.11af (Wi-Fi на частотах эфирного телевиденья), 802.11ah (Wi-Fi в диапазоне 0.9 МГц, предназначенный для реализации концепции IoT) и 802.11ad (Wi-Fi для скоростной связи периферийных устройств наподобие мониторов и внешних дисков) несовместимы друг с другом, имеют различные сферы применения и не подходят для анализа эволюции технологий передачи данных на большом интервале времени. Кроме того, вне рассмотрения останутся стандарты, определяющие стандарты безопасности (802.11i), QoS (802.11e), роуминга (802.11r) и т.д., так как они только косвенно влияют на скорость передачи данных. Здесь и далее речь идёт о канальной, так называемой брутто-скорости, которая является заведомо большей, чем фактическая скорость передачи данных из-за большого количества служебных пакетов в радиообмене.

Первым стандартом беспроводной связи был 802.11 (без буквы). Он предусматривал два типа среды передачи: радиочастота 2.4 ГГц и инфракрасный диапазон 850-950 нм. ИК-устройства не были широко распространены и в будущем развития не получили. В диапазоне 2.4 ГГц было предусмотрено два способа расширения спектра (расширение спектра является неотъемлемой процедурой в современных системах связи): расширение спектра методом скачкообразного изменения частоты (FHSS) и методом прямой последовательности (DSSS). В первом случае все сети используют одну и ту же полосу частот, но с различными алгоритмами перестроения. Во втором случае уже появляются частотные каналы от 2412 МГц до 2472 МГц с шагом 5 МГц, сохранившиеся по сей день. В качестве расширяющей последовательности используется последовательность Баркера длиной 11 чипов. При этом максимальная скорость передачи данных составляла от 1 до 2 Мбит/с. В то время даже с учётом того, что в самых идеальных условиях полезная скорость передачи данных по Wi-Fi не превышает 50% канальной, такие скорости выглядели весьма привлекательно в сравнении со скоростями модемного доступа к сети Интернет.

Для передачи сигнала в 802.11 использовалась 2-х и 4-х позиционная манипуляция, что обеспечивало работу системы даже в неблагоприятных условиях сигнал/шум и не требовало сложных приёмо-передающих модулей.
Например, для реализации информационной скорости 2 Мбит/с каждый передаваемый символ заменяется на последовательность из 11 символов.

Таким образом чиповая скорость составляет 22 Мбит/с. За один такт передачи передаются 2 бита (4 уровня сигнала). Таким образом скорость манипуляции составляет 11 бод и основной лепесток спектра при этом занимает 22 МГц, величину, которую применительно к 802.11, часто называют шириной канала (на самом деле спектр сигнала является бесконечным).

При этом согласно критерию Найквиста (число независимых импульсов в единицу времени ограничено удвоенной максимальной частотой пропускания канала) для передачи такого сигнала достаточно полосы 5.5 МГц. Теоретически устройства формата 802.11 должны удовлетворительно работать и на каналах, отстоящих друг от друга на 10 МГц (в отличии от более поздних реализаций стандарта, требующих вещания на частотах, отстоящих друг от друга не менее, чем на 20 МГц).

Очень быстро скоростей 1-2 Мбит/с стало не хватать и на смену 802.11 пришёл стандарт 802.11b, в котором скорость передачи данных была увеличена до 5.5, 11 и 22 (опционально) Мбит/с. Увеличение скорости было достигнуто путём уменьшения избыточности помехоустойчивого кодирования с 1/11 до ½ и даже 2/3 за счёт внедрения блочных (CCK) и сверхточных (PBCC) кодов. Кроме того, максимальное число ступеней модуляции было увеличено до 8-и на один передаваемый символ (3 бита на 1 бод). Ширина канала и используемые частоты не изменились. Но при уменьшении избыточности и увеличении глубины модуляции неизбежно выросли требования к соотношению сигнал/шум. Так как увеличение мощности устройств невозможно (ввиду экономии энергии мобильных устройств и законодательных ограничений), то это ограничение проявилось в небольшом сокращении зоны обслуживания на новых скоростях. Площадь обслуживания на унаследованных скоростях 1-2 Мбит/с не изменилась. От способа расширения спектра методом скачкообразной перестройки частоты было решено полностью отказаться. Больше в семействе Wi-Fi он не использовался.

Следующий шаг увеличения скорости до 54 Мбит/с был реализован в стандарте 802.11a (данный стандарт начал разрабатываться раньше, чем стандарт 802.11b, но финальная версия была выпущена позже). Увеличение скорости в основном было достигнуто за счёт увеличения глубины модуляции до 64 уровней на один символ (6 бит на 1 бод). Кроме того, была радикально пересмотрена радиочастотная часть: расширение спектра методом прямой последовательности было заменено на расширение спектра методом разделения последовательного сигнала на параллельные ортогональные поденсущие (OFDM). Использование параллельной передачи на 48 подканалах позволило снизить межсимвольную интерференцию за счёт увеличения длительности отдельных символов. Передача данных осуществлялась в диапазоне 5 ГГц. При этом ширина одного канала составляет 20 МГц.

В отличие от стандартов 802.11 и 802.11b, даже частичное перекрытие этой полосы может привести к ошибкам передачи. К счастью в диапазоне 5 ГГц расстояние между канали составляет эти самые 20 МГц.

Стандарт 802.11g не стал прорывом в плане скорости передачи данных. Фактически этот стандарт стал компиляцией 802.11a и 802.11b в диапазоне 2,4 ГГц: в нём поддерживались скорости обоих стандартов.

Однако данная технология требует высокого качества изготовления радио части устройств. Кроме того, данные скорости принципиально не реализуемы на мобильных терминалах (основной целевой группе стандарта Wi-Fi): наличие 4-х антенн на достаточном разнесении не может быть реализовано в малогабаритных устройствах как по соображениям отсутствия места, так и из-за отсутствия достаточного на 4 приёмопередатчика энергии.

В большинстве случаев скорость 600 Мбит/с является не более, чем маркетинговой уловкой и нереализуема на практике, так как фактически её можно добиться только между стационарными точками доступа, установленными в пределах одной комнаты при хорошем соотношении сигнал/шум.

Следующий шаг в скорости передачи был выполнен стандартом 802.11ac: максимальная скорость, предусмотренная стандартом, составляет до 6,93 Гбит/с, однако фактически такая скорость ещё не достигнута ни на одном оборудовании, представленном на рынке. Увеличение скорости достигнуто за счёт увеличения полосы пропускания до 80 и даже до 160 МГц. Такая полоса не может быть предоставлена в диапазоне 2,4 ГГц, поэтому стандарт 802.11ac функционирует только в диапазоне 5 ГГц. Ещё один фактор увеличения скорости – увеличение глубины модуляции до 256 уровней на один символ (8 бит на 1 бод) К сожалению, такая глубина модуляции может быть получена только вблизи точки из-за повышенных требований к соотношению сигнал/шум. Указанные улучшения позволили добиться увеличения скорости до 867 Мбит/с. Остальное увеличение получено за счёт ранее упомянутых потоков MIMO 8x8:8. 867х8=6,93 Гбит/с. Технология MIMO была усовершенствована: впервые в стандарте Wi-Fi информация в одной сети может передаваться двум абонентам одновременно с использованием различных пространственных потоков.

В более наглядном виде результаты в таблице:

В таблице перечислены основные способы увеличения пропускной способности: «-» - метод не применим, «+» - скорость была увеличена за счёт данного фактора, «=» - данный фактор остался без изменений.

Ресурсы уменьшения избыточности уже исчерпаны: максимальная скорость помехоустойчивого кода 5/6 была достигнута в стандарте 802.11a и с тех пор не увеличивалась. Увеличение глубины модуляции теоретически возможно, но следующей ступенью является 1024QAM, которая является очень требовательной к соотношению сигнал/шум, что предельно снизит радиус действия точки доступа на высоких скоростях. При этом возрастут требования к исполнению аппаратной части приёмопередатчиков. Уменьшение межсимвольного защитного интервала также вряд ли будет направлением совершенствования скорости – его уменьшение грозит увеличением ошибок, вызванных межсимвольной интерференцией. Увеличение полосы канала сверх 160 МГц так же вряд ли возможно, так как возможности по организации непересекающихся сот будут сильно ограничены. Ещё менее реальным выглядит увеличение количества MIMO-каналов: даже 2 канала являются проблемой для мобильных устройств (из-за энергопотребления и габаритов).

Из перечисленных методов увеличения скорости передачи большая часть в качестве расплаты за своё применение забирает полезную площадь покрытия: снижается пропускная способность волн (переход от 2,4 к 5 ГГц) и повышаются требования к соотношению сигнал шум (увеличение глубины модуляции, повышение скорости кода). Поэтому в своём развитии сети Wi-Fi постоянно стремятся к уменьшению площади, обслуживаемой одной точкой в пользу скорости передачи данных.

В качестве доступных направлений совершенствования могут использоваться: динамическое распределение OFDM поднесущих между абонентами в широких каналах, совершенствование алгоритма доступа к среде, направленное на уменьшение служебного траффика и использование техник компенсации помех.

Подводя итог вышесказанному попробую спрогнозировать тенденции развития сетей Wi-Fi: вряд ли в следующих стандартах удастся серьёзно увеличить скорость передачи данных (не думаю, что больше, чем в 2-3 раза), если не произойдёт качественного скачка в беспроводных технологиях: почти все возможности количественного роста исчерпаны. Обеспечить растущие потребности пользователей в передаче данных можно будет только за счёт увеличения плотности покрытия (снижения радиуса действия точек за счёт управления мощностью) и за счёт более рационального распределения существующей полосы между абонентами.

Вообще тенденция уменьшения зон обслуживания, похоже, является основным трендом в современных беспроводных коммуникациях. Некоторые специалисты считают, что стандарт LTE достиг пика своей пропускной способности и не сможет далее развиваться по фундаментальным причинам, связанным с ограниченностью частотного ресурса. Поэтому в западных мобильных сетях развиваются технологии оффлоада: при любом удобном случае телефон подключается к Wi-Fi от того же оператора. Это называют одним из основных способов спасения мобильного Интернета. Соответственно роль Wi-Fi сетей с развитием сетей 4G не только не падает, а возрастает. Что ставит перед технологией всё новые и новые скоростные вызовы.